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Abstract—Linguistic fuzzy modeling in high-dimensional regres-
sion problems poses the challenge of exponential-rule explosion
when the number of variables and/or instances becomes high. One
way to address this problem is by determining the used variables,
the linguistic partitioning and the rule set together, in order to
only evolve very simple, but still accurate models. However, evolv-
ing these components together is a difficult task, which involves
a complex search space. In this study, we propose an effective
multiobjective evolutionary algorithm that, based on embedded
genetic database (DB) learning (involved variables, granularities,
and slight fuzzy-partition displacements), allows the fast learn-
ing of simple and quite-accurate linguistic models. Some efficient
mechanisms have been designed to ensure a very fast, but not pre-
mature, convergence in problems with a high number of variables.
Further, since additional problems could arise for datasets with a
large number of instances, we also propose a general mechanism
for the estimation of the model error when using evolutionary al-
gorithms, by only considering a reduced subset of the examples.
By doing so, we can also apply a fast postprocessing stage for fur-
ther refining the learned solutions. We tested our approach on 17
real-world datasets with different numbers of variables and in-
stances. Three well-known methods based on embedded genetic
DB learning have been executed as references. We compared the
different approaches by applying nonparametric statistical tests
for multiple comparisons. The results confirm the effectiveness
of the proposed method not only in terms of scalability but in
terms of the simplicity and generalizability of the obtained models
as well.

Index Terms—Embedded genetic database learning, high-
dimensional regression problems, linguistic fuzzy modeling, mul-
tiobjective genetic fuzzy systems, scalability.

I. INTRODUCTION

L INGUISTIC fuzzy modeling in high-dimensional and
large-scale regression datasets is a challenging topic since

conventional linguistic fuzzy-rule-based systems (FRBSs) suf-
fer from exponential-rule explosion when the number of vari-
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ables and/or data examples becomes high [1], [2]. Another prob-
lem when we deal with high-dimensional datasets is the analysis
of algorithm scalability on big databases (DBs), emphasizing
the training time and the convergence toward compact and in-
terpretable models [3]. This way, we can distinguish two kinds
of problems: high dimensionality when a large number of vari-
ables have to be considered, and scalability in datasets with a
large amount of data.

A good way to address both problems is by searching for a
good and simple global structure within the same process, in
order to consider the relationships among the different compo-
nents defining the knowledge base (KB) of the obtained lin-
guistic models, i.e., by learning the main components of the
KB, a DB containing the definitions of the linguistic fuzzy par-
titions and a rule base (RB) containing the associated set of
rules, together. Since this method involves using different cod-
ing schemes to represent each solution, evolutionary algorithms,
particularly genetic algorithms (GAs), are useful for this task.
These kinds of global-search techniques have been successfully
applied to learn fuzzy systems in recent years, thus giving rise
to the so-called genetic fuzzy systems (GFSs) [3]–[5]. Further-
more, the application of multiobjective evolutionary algorithms
(MOEAs) to the derivation of compact linguistic FRBSs is a
prolific framework in which we can find several interesting and
recent works. Some MOEAs were proposed as postprocessing
techniques [6]–[13], while others were proposed as learning
techniques [11], [14]–[18].

However, this method involves a lot of compo-
nents/parameters that should be determined together: selection
of important variables, determination of a good number of lin-
guistic terms or granularities per variable, parametric definition
of the membership functions (MFs) and associated set of rules.
Since it involves using different coding schemes to represent a
complete solution and, therefore, a very complex search space,
this is a difficult task. In fact, the balance among problem size,
algorithm scalability, and solution quality is an important topic
for GFSs that is worth studying in depth [3], which has not
been directly taken into account in the mentioned evolutionary
approaches devoted to linguistic fuzzy modeling.

An efficient way to obtain the entire KB of an FRBS is to
obtain the DB and the RB within the same process but separately,
as based on embedded genetic DB learning [19]–[24]. This is
an evolutionary process that learns the DB and wraps a simple
method to derive a set of rules for each DB definition. This
enables the most-adequate context [20] for each fuzzy partition
to be learned, which strongly affects the final model complexity.
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However, this approach cannot solve the following contradictory
requirements.

1) The obtained linguistic models should be not only simple
and transparent, but competitive as well, in terms of the
generalization error.

2) The evolutionary learning algorithm should be not only
effective, but scalable as well, in terms of the time and
memory consumed, in order to be useful for a wide range
of high-dimensional or large-scale problems.

In this study, we propose a convenient reduction of the search
space for the embedded genetic DB learning (i.e., variable se-
lection, granularities, and MF parameters) and an effective and
efficient MOEA as a tool that makes use of some specific mecha-
nisms in order to ensure a fast convergence. To reduce the search
space [25], we propose the performance of a slight lateral dis-
placement of fuzzy partitions by applying a common displace-
ment parameter to all the MFs at each linguistic variable. This
allows a simple prescreening of promising granularities, which
avoids the derivation of very specific systems presenting over-
fitting, and preserves equidistributed strong fuzzy partitions. In
addition, the proposed MOEA includes such concepts as in-
cest prevention and restarting in order to improve the algorithm
convergence [26], together with some mechanisms to step up
the learning process, such as a rule-cropping criterion in the
RB-generation process.

The proposed method is able to handle dimensionality; how-
ever, it does not directly solve scalability with respect to the
number of available data in the dataset. To deal with this, we
also propose a mechanism to avoid using a big percentage of
the examples for error computation, thereby estimating it from a
reduced subset of the examples. By doing so, we can also apply
a postprocessing stage to further refine the learned solutions. We
have applied a previous MOEA [27], [28], namely, SPEA2E/E ,
including this new error-estimation procedure for fine tuning of
the MFs and rule selection, which will help to significantly im-
prove the performance of the simple global structure (which is
initially based on strong fuzzy partitions), while the complexity
is decreased.

We tested our approach on 17 real-world problems with a
number of variables ranging from four to 85, and a number of
samples ranging from 337 to 40 768. When it was possible, de-
pending on the dimensionality, we executed three well-known
accuracy-driven single-objective methods based on embedded
genetic DB learning in order to have some good performance
references. To assess the results obtained by the different algo-
rithms, we have applied nonparametric statistical tests [29]–[32]
for multiple comparisons, taking into consideration for the
MOEA the average of the most-accurate solution from each
Pareto front. The results obtained demonstrate the effectiveness
of the proposed method, particularly not only in terms of scala-
bility, but also in terms of simplicity and the generalizability of
the obtained models.

This contribution is arranged as follows. Section II proposes
the lateral displacement of fuzzy partitions. In Section III,
we present an effective MOEA to learn FRBSs for high-
dimensional problems. Section IV proposes the new method
for fast error computation and its application to the proposed

algorithm and to a known algorithm for postprocessing, i.e.,
SPEA2E/E . Section V shows the experimental study on the
proposed method and describes a web page associated with the
paper (i.e., http://sci2s.ugr.es/FS-MOGFS/) that
contains complementary material to this study. Finally,
Section VI draws some conclusions.

II. PROPOSAL FOR THE LATERAL DISPLACEMENT OF

LINGUISTIC FUZZY PARTITIONS

In [25], a new model for tuning of FRBSs was proposed, con-
sidering the linguistic 2-tuple representation scheme introduced
in [33], which allows the lateral displacement of the support of a
label. The main achievement is that, since the three parameters
usually considered per label [4], [34]–[40] are reduced to only
one symbolic translation parameter, this proposal decreases the
learning problem complexity, thus facilitating the derivation of
optimal models [14], [25], [41]. In any event, an FRBS based on
linguistic two tuples could be represented as a classical Mam-
dani FRBS [42], [43]. For a more detailed description of this
tuning approach, see [25] or the web page associated with the
paper (i.e., http://sci2s.ugr.es/FS-MOGFS/).

The lateral tuning of MFs allows a good adaptation for each
MF comprising the DB. However, our main aim in this study is
to learn a good, simple, and general KB in a fast way. Learning
all the components of the KB together represents a huge search
space when high-dimensional problems are considered. To per-
form a good adaptation for each individual MF while learning
the system structure could lead to very complex systems, since
it is difficult to obtain the best parameters for each concrete sys-
tem structure. Once relatively good parameters are obtained for
a system structure, convergence starts in this zone, and it is diffi-
cult to explore other good configurations (with similar accuracy)
that could represent more simple and interesting systems.

To solve this problem, we propose the application of a single
lateral displacement of linguistic fuzzy partitions by applying
a common α displacement parameter to all the MFs at each
linguistic variable, i.e., all the MFs are uniformly displaced de-
pending on the displacement parameter associated with each
linguistic fuzzy partition. In order to avoid very specific pa-
rameters and to preserve the original meanings of the MFs as
much as possible, we propose the use of a short displacement
interval, [−0.1, 0.1) in our case, as the range to express the
relative shifts associated with the labels. This way, we can rep-
resent the translation of a linguistic partition S by the 2-tuple
notation as

(S, α), α ∈ [−0.1, 0.1) ⇒ (si, α) ∀si ∈ S.

Fig. 1 shows the lateral displacement of a linguistic partition S
for a concrete α value. Some interesting characteristics of this
approach are as follows.

1) The search space is reduced providing a fast convergence.
This makes it easier to explore different granularities that
can represent promising linguistic partitions.

2) The constrained variation interval avoids a fine adaptation
of the MFs, thereby allowing only a simple prescreening
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Fig. 1. Lateral displacement in [–0.1, 0.1] of the whole linguistic partition
S = {s0 , s1 , s2 , s3 , s4}.

of promising granularities, which avoids the derivation of
very specific systems presenting overfitting.

All these properties facilitate a fast derivation of promising
models based on uniformly distributed strong fuzzy partitions.
Once they are obtained, a fine tuning [6], [7], [25], [37]–[39]
(i.e., postprocessing) could be applied easily depending on user
preference. We do not consider this possibility in this contribu-
tion as we are focused only on the learning stage.

III. FAST AND SCALABLE MULTIOBJECTIVE GENETIC FUZZY

SYSTEM FOR EMBEDDED GENETIC DATABASE LEARNING

An alternative to learn an entire KB is iterative rule learning
(IRL). However, IRL approaches usually obtain models with
too many rules involving all the system variables. For this rea-
son, they are usually devoted to obtaining approximate models,
which mainly focused on accuracy, in problems with a reason-
able number of variables. An example can be found in [44],
where a three-stage learning process is used to obtain a large
set of accurate approximate Takagi–Sugeno–Kang (TSK) fuzzy
rules. A methodology with a similar philosophy [45] consists of
the use of a clustering method for first generating a set of ini-
tial TSK local rules in order to subsequently reduce complexity
without affecting accuracy too much. Both approaches allow
TSK models (i.e., approximate FRBSs) to be obtained, consid-
ering all the variables in each rule and presenting highly accurate
results in problems with a reasonable number of variables.

In the case of linguistic FRBSs (which need the definition
of a permanent appropriate grid), an efficient way to learn the
entire KB consists of obtaining the DB and RB within the same
process but separately, which is based on embedded genetic
DB learning [19]–[24], [46]. This method allows us to learn
the most-adequate context [20], [46] for each fuzzy partition,
which is necessary in different contextual situations (different
applications).

Even though different optimization techniques could be con-
sidered for the embedded learning of the DB parameters, in this
study, we consider an MOEA for this task, which allows dif-
ferent coding schemes to be handled within the same process
and to improve both system accuracy and simplicity (which are
essential to handle high-dimensional problems). To this end, we
can learn different parts of the DB together (i.e., number of la-
bels and parameters), thus considering the relationships among
them.

The learning scheme considered to obtain complete KBs com-
prises two main components: DB evolutionary learning and an

Fig. 2. Learning scheme of the KB.

RB ad hoc rule-learning process. In the following, an effective
design of the learning process is first discussed and proposed
later to present the specific fast MOEA as the most important
part of the proposed technique.

A. Convergence and Scalability Discussion for the Embedded
Algorithm Design

Some problems arise when high-dimensional datasets are
considered (see Fig. 2). The two main problems are as follows:

1) The large number of evaluations needed to reach conver-
gence: We solve this problem in two ways. By learning to-
gether the number of labels and single-partition displace-
ment parameters for each linguistic variable instead of the
three definition points for each MF (reduced search space);
and by developing an advanced MOEA based on the well-
known SPEA2, we ensure an effective tradeoff between
exploration and exploitation. This specific MOEA is able
to stop the process when convergence is reached. This
way, we can ensure a fast but effective convergence in
order to avoid unneeded evaluations.

2) Too much time is required to generate the RB: This prob-
lem is related to the previous one. Each evaluation requires
generating an RB based on the coded DB. Even though
a fast ad hoc rule-generation method will be used, this
method can take a significant amount of time in high-
dimensional problems. Due to the required number of
evaluations, it poses a problem. We solve this problem
by including a cropping criterion in the RB-generation
method, thus avoiding the generation of excessively large
RBs that expend too much time and make no sense in
linguistic fuzzy modeling. Additionally, we enable the re-
moval of unnecessary variables while evolving, thus lead-
ing to DBs that do not provoke an excessive number of
rules when the RB-generation process is applied.

The two previous problems are directly related to the learning
process. However, a third problem arises in large-scale problems
(i.e., datasets with a large number of data) since each evaluation
can take a considerable amount of time (see Fig. 2). This problem
is greatly reduced by solving the two previous ones and is also
related to data preprocessing [47] or parallel computation [48],
[49]. We address this problem in Section IV, thus proposing a
general scheme for fast error estimation.



ALCALÁ et al.: FAST AND SCALABLE MULTIOBJECTIVE GENETIC FUZZY SYSTEM FOR LINGUISTIC FUZZY MODELING 669

1) Embedded Genetic Database Learning: Taking into ac-
count the previous discussion, the proposed algorithm comprises
of the following two main components.

1) An effective MOEA based on SPEA2 [50] with two min-
imization objectives (i.e., system error and number of
rules) in order to learn promising DBs. In order to im-
prove its search ability and good convergence, this MOEA
implements such concepts as incest prevention and restart-
ing [26] as well. It allows us to define the following:

a) the number of labels per variable, which determine
the corresponding uniformly distributed strong lin-
guistic partitions. We will enable the possibility of
removing unnecessary variables by allowing granu-
larity 1, which means that the corresponding variable
is not considered in the final model;

b) the lateral displacements for each linguistic
partition.

2) A quick ad hoc data-driven method to learn an RB from
each DB definition within the evolutionary process. The
cooperative action of both components allows the whole
definition of the KB (i.e., DB and RB) to be obtained.
The simple Wang and Mendel algorithm [51] (WM) will
be considered for this task by adding an RB cropping
mechanism.

Due to the importance of the cropping mechanism for high-
dimensional datasets, we first explain this approach devoted to
shortening the time spent on evaluating nonsensical KBs. Then,
the MOEA for evolving DBs that integrates this version of WM
is explained in depth.

2) Cropping Mechanism for the Ad Hoc Wang and Mendel
Algorithm: The WM process is based on the existence of
a predefined DB and a set of input–output training data
E = {e1 , . . . , el , . . . , em} with el = (xl

1 , . . . , x
l
N −1 , y

l), l ∈
{1, . . . , m}, m being the dataset size, and N − 1 being the
number of input variables. Since, in high-dimensional prob-
lems, WM can take a long time to derive thousands of rules, a
cropping criterion has been added to this method. This way,
the RB is generated by means of the following steps, inte-
grating the WM cropping mechanism as the last step of the
process.

1) Initially, the RB is empty, and the data are randomly or-
dered (the data are reordered at each generation of the
evolutionary algorithm).

2) For each example el in E, we do the following.
a) Generate the rule with the labels best covering the

example (xl
1 , . . . , x

l
N −1 , y

l).
b) Compute the covering degree of the complete rule

(i.e., antecedent and consequent).
c) If there is no rule with the same antecedent in the

RB, add the obtained rule to the RB together with
its covering degree.
Otherwise, maintain the consequent and covering
degree of the rule with the highest coverage.

d) Stop the process if the RB reaches a limit of 50 rules,
and mark the RB as incomplete.

In this contribution, we propose a maximum number of rules,
i.e., 50, for the rule-cropping mechanism, which are based on

some empirical trials. The smaller this number is, the faster the
method is, and the simpler the solutions are. However, the pre-
cision of the models finally obtained is significantly affected
with too small values. We detected this phenomenon in values
clearly under 50, thereby making this number a good limit for
a large variety of problems. Higher values or even those that
do not use cropping do not obtain significantly more accurate
solutions in terms of generalizability (see the web page asso-
ciated with the paper for some examples demonstrating this at
http://sci2s.ugr.es/FS-MOGFS/).

B. Proposed Multiobjective Evolutionary Algorithm

This section presents the proposed MOEA for the embedded
genetic DB learning, namely, fast and scalable multiobjective
GFS (FSMOGFS). In the following, the components needed to
implement this algorithm are explained in depth, which include
DB codification, objectives and incomplete RBs penalization,
initial gene pool, crossover and mutation, incest prevention,
restarting, and stopping condition.

1) Database Codification: A double-coding scheme (i.e.,
C = C1 + C2) to represent both parts, i.e., granularity and
translation parameters, is considered.

1) Number of labels (C1): This part is a vector of integer
numbers with size N (with N representing the number
of linguistic variables) in which the granularities of the
different variables are coded

C1 = (L1 , . . . , LN ).

Each gene Li represents the number of labels used by
the ith variable and takes values in the set {2, . . . , 7}.
Additionally, in the case of input variables, it can take
a value equal to 1 to determine that the corresponding
variable is not used.

2) Lateral displacements (C2): This part is a vector of real
numbers with size N in which the displacements of the
different variables are coded. This way, the C2 part has the
following structure (where each gene is the displacement
value of the fuzzy partition of the corresponding linguistic
variable and takes values from [−0.1, 0.1])

C2 = (α1 , . . . , αN ).

2) Objectives and Incomplete Rule Bases Penalization:
Once a complete KB is obtained, the following two objectives
are minimized for this problem: the number of rules (i.e., sim-
plicity) and the mean-squared error (i.e., accuracy):

MSE =
1

2 · |E|

|E |∑

l=1

(F (xl) − yl)2

with |E| being the dataset size, F (xl) being the output obtained
from the FRBS decoded from a given chromosome when the
lth example is considered, and yl being the known desired out-
put. The fuzzy-inference system considered to obtain F (xl) is
the center of gravity weighted by the matching strategy as a
defuzzification operator and the minimum t-norm as implication
and conjunctive operators.
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In order to obtain a complete KB from a given chromosome,
we apply WM to the DB coded by this chromosome, consid-
ering a cropping mechanism. First, in order to decode this DB,
equidistant strong fuzzy partitions are defined considering the
granularity values in C1 . Second, the MFs of each variable are
uniformly displaced to their new position considering the dis-
placement values in C2 .

WM is applied to the obtained DB, but it stops if the RB
reaches a maximum of 50 rules and marks the RB as incomplete
in order to penalize its objective values.

1) In the case of the number of rules, we estimate the worst-
possible value as the product of the number of labels of the
input variables in the decoded DB (which is a pessimistic
proportional estimation of the number of rules).

2) In the case of the MSE, it is multiplied by 2.0 (if an
example is not covered by the incomplete RB, the middle
of the output domain is given as the estimated output).

This way, these solutions are not a problem for the compu-
tational time, and they compete with each other at secondary
Pareto fronts, which is useful for the detection of promising
combinations of selected variables and granularities at the first
stages of the algorithm (i.e., until appropriate combinations of
variables and granularities that allow the derivation of RBs with
a good number of rules arise, which will dominate those previ-
ous incomplete solutions).

3) Initial Gene Pool: The initial population will be compris-
ing following two different subsets of individuals.

1) In the first subset, each chromosome has the same num-
ber of labels for all the system input variables. In order
to provide diversity in the C1 part, these solutions have
been generated by considering all the possible combi-
nations in the antecedent part, i.e., from two labels to
seven labels in all the input variables (i.e., six combina-
tions). For each of these combinations, all the possible
combinations are generated in the consequent part (i.e.,
six combinations per each input combination). Addition-
ally, for each of the previous combinations, two copies
are included with different values in the C2 part. The first
one with random values in [−0.1, 0.0] and the second
one with random values in [0.0, 0.1]. Thus, a total of 72
(i.e., 6 ∗ 6 ∗ 2) different individuals are generated. If there
is no space for these solutions, they are included from
the smallest granularities (which is the most-interesting
combinations, in principle) to the highest possible
ones.

2) In the second subset, we generate random solutions in or-
der to completely fill the population (values in {2, . . . , 7}
for C1 and values in [−0.1, 0.1] for C2).

Finally, except in the cases of problems with less than three
input variables, an input variable v is removed at random, i.e.,
Lv = 1, in the first individual. This action is repeated until no
more than ten variables remain in this individual. If the problem
has no more than ten variables, this action is not repeated, and
thus, only one variable is removed at random. This process is
applied to all the individuals in the population in order to avoid
the generation of solutions that make no sense (because of their
exorbitant number of rules).

Fig. 3. Behavior of the PCBLX and BLX operators.

4) Crossover and Mutation Operators: The crossover op-
erator depends on the part of the chromosome to which it
is applied. A crossover point is randomly generated and the
classical crossover operator is applied to this point for the C1
part. The parent-centric BLX (PCBLX) operator [52], which is
based on BLX-α, is applied to the C2 part (Fig. 3 depicts the
behavior of these kinds of operators). Specifically, PCBLX is
described as follows. Let us assume that X = (x1 . . . xn ), and
Y = (y1 . . . yn ), with xi, yi ∈ [ai, bi ] ⊂ � and i = 1, . . . , n, are
two real-coded chromosomes that are going to be crossed. The
PCBLX operator generates the following two offspring.

1) O1 = (o11 . . . o1n ), where o1i is randomly (uniformly)
generated in the interval [l1i , u

1
i ], with l1i = max{ai, xi −

Ii}, u1
i = min{bi, xi + Ii}, and Ii =| xi − yi | ·α. In our

case, α has been fixed to 0.3.
2) O2 = (o21 · · · o2n ), where o2i is randomly (uniformly)

generated in the interval [l2i , u
2
i ], with l2i = max{ai, yi −

Ii}, and u2
i = min{bi, yi + Ii}.

This way, four new individuals are obtained by combining
the two offspring generated from C1 with the two offspring
generated from C2 . For each of them, the mutation operator is
applied with probability Pm . The mutation operator decreases
the granularity by 1 in a gene g selected at random (i.e., Lg =
Lg − 1) or randomly determines a higher granularity in {Lg +
1, . . . , 7} with the same probability. No decreasing is performed
when it provokes DBs with only one input variable. The same
gene is also changed at random in C2 . Finally, after considering
mutation, only the two most-accurate individuals are taken as
descendants.

5) Incest Prevention: An incest-prevention mechanism has
been included by following the concepts of CHC [26] and by
only taking into account the C2 parts. Following the original
CHC scheme (for binary coding), two parents are crossed if their
hamming distance divided by 2 is more than a predetermined
threshold L. Since C2 makes use of a real coding scheme, we
have to transform each gene considering a Gray code (i.e., binary
code) with a fixed number of bits per gene (BITSGENE) that is
determined by the system expert. This way, the threshold value
is initialized as

L = (#GenesC2 · BITSGENE)/4.0.

Typically, L is decremented by 1 when there are no new individ-
uals in the next generation. In order to step up the convergence,
in our case, L will be decremented by 2 at each generation
for problems with less than 50 variables. In order to increase
the convergence speed for hard high-dimensional datasets, this
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quantity is increased by 2 for every 50 additional variables (i.e.,
L = L − 2 − 2 ∗ �N/50	). Incest prevention represents a way
to provide a good tradeoff between exploration and exploitation,
thus avoiding unnecessary crosses of very similar solutions at
the earlier stages of the algorithm.

6) Restarting and Stopping Condition: In order to get away
from local optima, a restarting mechanism [26] (external popu-
lation is forced to be empty) is applied by including the most-
accurate individual as a part of the new population and by gen-
erating the remaining individuals at random (taking values be-
tween 1 and the granularity coded in the most-accurate individ-
ual for each gene of the C1 part). This mechanism is applied
when the threshold value L is below zero (L is set to its initial
value).

The algorithm ends when a maximum number of evaluations
are reached or when L is below zero for a second time, i.e.,
only two exploration/exploitation stages are needed to reach
convergence.

IV. PARTIAL-ERROR COMPUTATION ON LARGE-SCALE

DATABASES FOR ELITIST-BASED EVOLUTIONARY ALGORITHMS:
EVOLVING WITH ESTIMATED ERRORS

As stated in Section I, considering a postprocessing stage on
the KBs obtained by the proposed learning algorithm represents
a way to enhance the solutions. To this end, we will apply a
previous MOEA, namely, SPEA2E/E [27], [28], to fine tune
the MFs and rule selection that will help to significantly im-
prove the performance of the simple global structure (which is
initially based on strong fuzzy partitions), while the complexity
is decreased.

While the problem of high dimensionality (i.e., high number
of variables) is being solved at a first stage by the proposed
learning algorithm, there are still two interdependant problems
representing a difficult challenge in order to apply this second
postprocessing stage: the convergence, which imposes a min-
imum number of evaluations needed (which is not a problem
itself if the algorithm is well designed); and the large time con-
sumed by error computation in large-scale datasets (i.e., datasets
with a large amount of data). Since this last problem cannot
be solved by their own learning or tuning strategy, and since,
particularly in the case of tuning, it could present high computa-
tional times in some datasets, we propose, in this section, a new
general mechanism for fast error computation on large-scale
datasets. This procedure is based on taking a small percentage
of the training examples to estimate the quantity of errors of
bad solutions, thus only using all the examples to evaluate good
candidate solutions. In what follows, we present the main steps
to apply this fast fitness-evaluation procedure, which is defined,
in general, as evolving with estimated errors with any kind of
Elitist-based evolutionary algorithm, either single-objective or
multiobjective elitist-based ones.

The evaluation process is based on the existence of a set of
input–output training data E = {e1 , . . . , el , . . . , em}, with m
being the dataset size. For a new solution C, whose perfor-
mance is going to be computed, two sets of solutions have to be
taken into account: the set of elite solutions (one solution in the

case of single-objective algorithms) and the solutions previously
evaluated at the current generation. Let re be the rate of exam-
ples used to estimate the error. In any case, if �re ∗ m	 ≥ 1000,
then re = 1000/m, i.e., no more than 1000 examples have to be
considered. The subset of examples Ee for error estimation is
obtained by randomly selecting �re ∗ m	 new examples at each
generation. Thus, Ee is kept fixed for a complete generation.
After each generation, the examples are replaced by random
selection from those examples that were not used in the previ-
ous generation. This way, we promote a rotation of the selected
examples.

Let Selit and Scurrent be the set of elite solutions and the set of
evaluated solutions at the current generation, respectively. The
fast error-computation process is as follows.

1) Compute the error of solution C in Ee (i.e., error estima-
tion), and assign this error to C.

2) If by taking into account the estimated error and the solu-
tions in Selit and Scurrent , C is the candidate to become a
member of Selit (i.e., it presents the best error in single-
objective algorithms, or it is a non dominated solution in
multiobjective ones) continue to step 3; otherwise, go to
step 4.

3) Perform a complete evaluation by considering the esti-
mated error and the examples in E − Ee . This way, Selit
(the final output of the algorithm) will always contain so-
lutions evaluated considering 100% of the examples.

4) Evaluations = evaluations + 1 (since this mechanism is
proposed for saving time and not for saving evaluations).

The new mechanism for fast performance/error computation
has been included in the postprocessing algorithm proposed
in [27] in order to speed up the fine classic tuning process,
thereby giving way to an algorithm with a low computational
expense. It has also been included within the proposed learning
algorithm FSMOGFS in order to improve the computational time
with respect to the number of training data. With regard to this
algorithm, we have to clarify that the reduced set of examples
is only used to estimate the errors, i.e., we do not recommend
using this set for the induction of rules. This way, we always
use all the dataset to obtain the rules and the reduced one only
to compute/estimate the errors.

V. EXPERIMENTS AND ANALYSIS OF RESULTS

In order to evaluate the usefulness of the proposed approach,
namely, FSMOGFSe + TUNe , in high-dimensional problems, we
have used 17 real-world problems with different numbers of
variables and cases. Table I sums up the main characteristics of
the different problems considered in this study and shows the
link to the knowledge extraction based on evolutionary learning
(KEEL) project web page [53] from which they can be down-
loaded. These problems have been selected from minor to major
complexity, covering a range from four to 85 input variables,
and from 337 to 40 768 examples (even though each of them
is complicated in itself in terms of the modeling task). The
more complex problems are ELV, AIL, MV, and TIC because
of the large number of variables and data. To the best of our
knowledge, the problems have never been solved using GFSs or
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TABLE I
DATASETS CONSIDERED FOR THE EXPERIMENTAL STUDY

linguistic fuzzy models. This is due to the long time needed to
evaluate an individual and to the minimum number of evalua-
tions needed to reach convergence of GFSs. Moreover, a large
number of rules would be easily obtained for these kinds of
problems, which make no sense in linguistic fuzzy modeling.
Then, these problems represent an important challenge for this
algorithm.

This section is organized as follows.
1) First, we describe the experimental setup and introduce

the information shown at the web page associated with
the paper in Section V-A.

2) Second, we compare the most-accurate solutions
of our proposal with respect to three well-known
accuracy-oriented single-objective related algorithms in
Section V-B.

3) Third, we compare both stages, including or not the fast
error-computation procedure in terms of the performance,
in Section V-C.

4) Fourth, we show the computational costs of the differ-
ent algorithms and discuss the scalability of the proposed
approach in Section V-D.

5) Finally, in Section V-E, for each dataset, we plot the av-
erage Pareto fronts and the average results of the single-
objective-based approaches. These plots provide reliable
information on the form and characteristics of the Pareto
fronts obtained, thus allowing us to check the trend and
the kind of correlation of the training and the test errors.

A. Experimental Framework

This section describes the experimental setup, including a
brief description of the methods and the nonparametric statistical
tests considered for comparisons. It then introduces the contents
of the web page with additional material associated with the
paper.

1) Experimental Setup: In order to evaluate the effective-
ness of the proposed method designed for fast learning and its
applicability to large-scale problems (with and without a tuning

stage; with and without fast error estimation), three well-known
single-objective-based methods for the learning of accurate KBs
have been considered for comparisons, i.e., GR-MF [19], GA-
WM [20], and a more recent and effective approach, namely,
GLD-WM [54]. These methods are also based on embedded
genetic DB learning. Further, WM [51] is also considered as
a reference since all of these approaches are based on it. A
brief description of the studied methods is presented in the
next three paragraphs, while Table II summarizes their main
characteristics.

1) WM [51] algorithm is considered as a simple rule-
generation method to quickly obtain RBs from a prede-
fined DB. This method is considered as a reference since
the studied algorithms are devoted to obtain good fuzzy
partitions for the application of WM. The initial linguistic
partitions for this method are comprised by L linguistic
terms with uniformly distributed triangular MFs giving
meaning to them. This way, we will refer this method as
WM(L), with L taking values in {3, 5, 7}.

2) On the other hand, three different GFSs are devoted to
obtain a complete KB (by embedded genetic DB learn-
ing) are considered for comparisons. Both are accuracy-
oriented single-objective-based algorithms whose main
objective is to obtain FRBSs as accurately as possible.
The first one, i.e., GR-MF [19], learns the granularity
for each fuzzy partition and the MFs parameters (their
three definition points). The second one, I.E., GA-WM [20],
learns the granularity, scaling factors, and the domains
(i.e., the variable domain or working range to perform
fuzzy partitioning) for each system variable. Both meth-
ods obtain the RB by means of the WM algorithm. The
third one, i.e., GLD-WM [54], has been proposed more
recently for an effective learning of the KB by obtain-
ing the granularity and the individual lateral displace-
ments of the MFs (i.e., fine parameter adaptation), which
will have the benefit of obtaining higher accuracy in the
results.

3) The proposed method, namely, FSMOGFS (see Section III)
or FSMOGFSe when it includes the fast error-estimation
mechanism (see Section IV), has fewer freedom degrees
than the other three genetic approaches selected for com-
parisons, which should obtain the most-accurate results
from a theoretical viewpoint. Therefore, they represent a
good accuracy goal for the proposed algorithm at the first
stage in those problems in which they are still applica-
ble (particularly in the case of GLD-WM, which was more
recently designed to obtain as accurate as possible linguis-
tic models). The addition of a postprocessing technique,
namely, FSMOGFS + TUN or FSMOGFSe + TUNe when it
includes the fast error-estimation mechanism, gives way
to a new procedure/method working at two stages, which
presents the same freedom degrees as the approaches
selected for comparisons and should obtain the best
results.

In all the experiments, we adopted a fivefold cross-validation
model, i.e., we randomly split the dataset into five folds, each
containing 20% of the patterns of the dataset, and used four
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TABLE II
METHODS CONSIDERED FOR THE EXPERIMENTAL STUDY

folds for training and one for testing.1 For each of the five
partitions, we executed six trials of the algorithms (i.e., six
different seeds). For each dataset, we, therefore, consider the
average results of 30 runs. In the case of FSMOGFS, the average
values are calculated considering the most-accurate solution
from each obtained Pareto front. Our main aim following this
approach is to have the possibility of statistically comparing
the single-objective approaches (only accuracy) with the most-
accurate solution found by the proposed MOEA.

In order to assess whether significant differences exist among
the results, we adopt statistical analysis [29]–[32] and, in par-
ticular, nonparametric tests, according to the recommendations
made in [29] and [30], where a set of simple, safe, and robust
nonparametric tests for statistical comparisons of classifiers has
been analyzed. We will employ different approaches for multiple
comparison, including Friedman’s test [55], Iman and Daven-
port’s test [56], and Holm’s method [57]. For a detail description
of these tests and for detail explanation of the use of nonpara-
metric tests for data mining and computational intelligence, see
http://sci2s.ugr.es/sicidm/. To perform the tests,
we use a level of confidence α = 0.1.

The values of the input parameters considered by GR-MF, GA-
WM, and GLD-WM are population size of 61, 100 000 evaluations,
0.6 as crossover probability, and 0.2 as mutation probability
per chromosome. In the case of the SPEA2-based methods
(i.e., FSMOGFS, FSMOGFSe , FSMOGFS + TUN, and FSMOGFSe

+ TUNe ), we have considered an external population size of 61
(the same size used by the named single-objective algorithms)
and a proportion of 1/3 rounded to 200 as standard population
size. The remaining parameters for them are a maximum of
100 000 evaluations, 0.2 as mutation probability (crossover is
always applied in SPEA2), 30 bits per gene for the Gray codi-
fication, re = 0.2 for the fast error-computation technique, and
the set {2, . . . , 7} as possible numbers of labels in all the system
variables for the learning approaches. The same set {2, . . . , 7}
has been considered for GR-MF, GA-WM, and GLD-WM after
comparing this configuration with the original configuration
indicated by the authors in the corresponding papers [19],
[20], [54] (i.e., {3, . . . , 9}). See this study as complementary
material in the associated web page at http://sci2s.ugr.
ugr.es/FS-MOGFS/.

1The corresponding data partitions (i.e., fivefold) for these datasets are
available at the KEEL project web page [53]: http://sci2s.ugr.
es/keel/datasets.php.

2) Web Page Associated With the Paper: In order to pro-
vide additional material to the paper’s content, we have devel-
oped a web page at http://sci2s.ugr.es/FS-MOGFS/
in which we have included the following information.

1) the datasets’ partitions employed in this paper. These par-
titions can be found in a table together with the main
characteristics of the used datasets;

2) an Excel file with the complete tables of results. We have
included an Excel file with the training and test results for
all the algorithms so that any interested researcher can use
them to include their own results and extend the present
comparison; a figure with the average Pareto fronts for all
the studied datasets;

3) some examples of the influence of the lateral displace-
ments and the rule-cropping strategy in the proposed
method;

4) some representative models in some of the datasets con-
sidered are also depicted to graphically show the kinds of
models obtained by the proposed algorithm. Additionally,
we have depicted the KB of the most accurate solution
from the first data partition and seed in all the datasets and
included them in a zip file;

5) the results of GR-MF, GA-WM, and GLD-WM with the
sets {2, . . . , 7} and the original configuration indicated
by the authors in the corresponding papers [19], [20],
[54], {3, . . . , 9}, as possible numbers of labels in all the
system variables. We have included these results and the
assessment of Wilcoxon’s signed-rank test [58], [59] for
pairwise comparison in favor of versions with {2, . . . , 7}
in both, i.e., test error and number of rules;

6) a description of Wilcoxon’s signed-rank test [58]–[60]
and an explanation on how to apply it in the regression
framework;

7) an introduction to the lateral tuning of MFs [25] as pre-
liminary information to the paper.

B. Results and Analysis of the Most-Accurate Solution

The results obtained by the studied methods are shown in
Table III. This table is grouped in columns by algorithms, and it
shows the average of the results obtained by each algorithm in
all the studied datasets. For each one, the first column shows the
average number of rules and used variables (R/V). The second
and third columns show the average MSE in training and test
data (Tra./Tst.) together with their respective standard deviations
(SDs). No values are shown with GR-MF, GA-WM, and GLD-
WM in MV, ELV, CA, AIL, and TIC because the large number
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TABLE III
AVERAGE RESULTS OF THE DIFFERENT ALGORITHMS IN COMPLEXITY AND ACCURACY (TRAINING/TEST)

of variables and cases provoked memory overflow errors after
several hours running without finishing the evaluation of the
initial population (some memory issues were improved in these
methods to solve this problem, which helped to show results in
at least some of the datasets with more than seven variables, but
it was impossible to run them in these problems).

As stated above, we have included WM as a reference on
different fixed granularities. By contrast, we want to compare
all the studied GFSs in order to determine whether or not the
proposed approach with and without tuning is working properly
in terms of the test error and the number of rules. We do not
include the methods without fast error estimation here since we
are proposing this mechanism based on the fact that the results
are almost the same and in order to speed up the process with
these kinds of complex problems. In any case, since their coun-
terparts without fast error computation are a good alternative as
well, they will also be analyzed in the following sections.

Focusing on the number of rules, it is clear that the proposed
algorithms have the advantage since they consider feature selec-
tion. What is remarkable about the effect of the postprocessing
mechanism is that it is able to significantly reduce the number
of rules, while the system error is decreased.

TABLE IV
RANKINGS THROUGH FRIEDMAN’S TEST ON TST. APPLYING ONE OR BOTH

STAGES OF THE PROPOSED ALGORITHM

In case of the test error, we adopt a statistical analysis. Since
we will compare more than two algorithms together, we use
nonparametric tests for multiple comparison. In order to per-
form a multiple comparison, it is necessary to check whether
any of the results obtained by the algorithms present any in-
equality. In the case of finding this, we can find out, by using
a posthoc test, which algorithms’ partners’ average results are
dissimilar. We will use the results obtained in Tst., thus defining
the control algorithm as the best-performing algorithm (which
obtains the lowest value of ranking, computed through a Fried-
man test [55]). In order to test whether significant differences
exist among all the mean values, we use Iman and Davenport’s
test [56]. Finally, we use Holm’s [57] posthoc test to compare
the control algorithm with the remainder.
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TABLE V
HOLM’S Posthoc TEST FOR THE STUDIED METHODS WITH α = 0.1 ON TST

Table IV shows the rankings of the different methods con-
sidered in this study when we only apply the first stage of our
algorithm (i.e., first study on FSMOGFSe ; see the left part of
Table IV) and when we apply both stages (i.e., second study
on FSMOGFSe + TUNe ; see right part of Table IV). ImanDav-
enport’s test tells us that significant differences exist among the
observed results in all datasets, with p-values (i.e., 8.974E-7
and 1.622E-9) on Tst. for both studies, respectively. The best
rankings are obtained by GLD-WM when only the first stage
is considered and by FSMOGFSe + TUNe when the complete
algorithm is considered.

We nowapply Holm’s test to compare the best ranking method
with the remaining methods for each study, and to obtain the
results on FSMOGFSe versus GR-MF and FSMOGFSe versus GA-
WM (for the first study) and on GLD-WM versus GR-MF and GLD-
WM versus GA-WM (for the second study). Table V presents these
results. In this table, the algorithms are ordered with respect to
the z-value obtained for each study.

In the case of only using the first stage of the algorithm
(first study in the left part of the table), Holm’s test rejects the
hypothesis of equality with the rest of the methods (p < α/i),
but FSMOGFSe in Tst., thus indicating that GLD-WM outperforms
the previous approaches, but not FSMOGFSe . Further, when we
check the statistical results with the same test on FSMOGFSe

versus GR-MF and FSMOGFSe versus GA-WM in the bottom part
of Table V, it is clear that FSMOGFSe outperforms GR-MF and
GA-WM as well. From this analysis, we can state that FSMOGFSe

outperforms the previous methods but GLD-WM in accuracy,
while, of course, it outperforms all of them in complexity and
scalability.

In the case of using the complete algorithm (second study in
the right part of the table), Holm’s test rejects the hypothesis of
equality with the rest of the methods in Tst. (p < α/i). From this
analysis, we can state that FSMOGFSe + TUNe outperforms the
previous methods in accuracy and, of course, in complexity and
scalability. On the other hand, we can check in the bottom part
of Table V that GLD-WM outperforms GR-MF and is very close
to outperforming GA-WM (the hypothesis is accepted because
of the low quantity of datasets available in the regression frame-
work, which makes it more difficult to assess the differences in
this case).

Analyzing the results shown in Table III and the statistical
evidence obtained, we can highlight the following.

1) FSMOGFSe + TUNe obtained the best results in the test
error, with FSMOGFSe being the key point in these re-
sults and TUNe a good complementary stage. Even though
FSMOGFSe has been designed to obtain simpler models, it

is still preferable with respect to the previous approaches
(thereby obtaining not so great results in accuracy with
respect to GLD-WM but simpler solutions based on strong
equally distributed fuzzy partitions).

2) The larger the granularities are, and therefore, the more
rules obtained, the more the overfitting increases. It is
particularly clear in the most-complex datasets when
taking into account the results from WM (granularities
from 3 to 7).

3) Both single-objective-based GFSs (i.e., GR-MF and GA-
WM) overfit in most of the datasets, even though we se-
lected the versions with the best test values to give them
the possibility of competing in the best conditions. This
is probably due to the low proportion of data with respect
to the number of variables in these kinds of large-scale
datasets. However, this is not the case with GLD-WM (one
of the state-of-the-art algorithms in terms of accuracy for
linguistic fuzzy modeling), which presents very competi-
tive results in both, training and test sets.

To sum up, the proposed method obtained very simple so-
lutions, in general, without significant overfitting, i.e., highly
correlated values in training and test in all the datasets before
and after fine tuning of the MFs. Another interesting aspect of
the algorithm is the number of variables that it considers in
the different datasets (a value of around 3–4 in most of them).
In this sense, and taking into account that MPG6 is the same
dataset as MPG8 without the two variables removed by experts,
it seems that the method is good to remove these variables, thus
obtaining practically the same results in number of rules and
accuracy. Then, the proposed approach seems good, even in the
case that variables without interesting additional information
are initially included in the datasets. This property makes the
method scalable for high-dimensional problems, for which it is
still able to obtain good solutions from the point of view of the
accuracy-interpretability tradeoff.

C. Analysis of the Use of Partial Performance Computation

In this section, we present the results of the different versions
of the proposed technique in order to check the effects of the
fast error-estimation mechanism. These results in the first stage
(only fast learning) and in the complete process (including post-
processing) are shown in Table VI separately. The best results
are shown in boldface for each of the parts.

Taking into account the results in this table, we can observe
that very similar results were obtained in the number of rules
and in both kinds of errors for both parts. In any case, we can
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TABLE VI
AVERAGE RESULTS OF THE PROPOSED ALGORITHMS WITHOUT AND WITH FAST FITNESS COMPUTATION IN COMPLEXITY AND ACCURACY (TRAINING/TEST)

find some little differences. FSMOGFSe and FSMOGFSe + TUNe

show a small increment in the test error with respect to their
counterparts. Besides, they also show a small decrement in the
number of rules, thereby showing that the proposed mechanism
helps to obtain models with a little less complexity (in all the
17 datasets for the last stage) and a little bit less accuracy (in
12 of the 17). In any event, by checking one by one the results
in each part of the table and taking into account the differences
shown in Table III for the different methods, we can consider
that the mechanism is very useful in both stages, i.e., FSMOGFSe

and TUNe , since it allows almost equivalent results with re-
spect to the original counterparts to be obtained, even though
FSMOGFSe + TUNe also includes the slight differences derived
from FSMOGFSe .

D. Computational Times and Scalability of the
Proposed Algorithm

With respect to scalability, it is very important to analyze the
running times of the different methods (these times were ob-
tained in an Intel Core 2 Quad Q9550 2.83-GHz, 8-GB RAM
by using only one of the four cores). Table VII shows the run-

TABLE VII
AVERAGE TIME OF A RUN OF WM AND ITS CROPPED VERSION—MINUTES AND

SECONDS (M:S) – (S)

ning times of the fast WM algorithm (i.e., ad hoc method) and
its cropped version. Of course, WM is practically instantaneous
in many of the datasets. However, it is very interesting to see the
times this simple method can take in the case of MV, ELV, CA,
AIL, and TIC (which is more than 1 min in most of the cases).
Since each individual evaluation in the genetic approaches is
based on running WM, it represents a time-computing problem
for the embedded algorithms. This is one of the main reasons
why we propose the rule cropping strategy included in FS-
MOGFS, which is needed to ensure a maximum computing time
for the WM module independently of the number of cases in any
dataset (only lineal with respect to the number of variables). In
fact, it can be seen from the table that while the original version
is mainly dependent on the number of examples, the cropped
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TABLE VIII
AVERAGE TIME OF A RUN OF THE DIFFERENT GFSS—HOURS, MINUTES, AND SECONDS (H:M:S)

TABLE IX
AVERAGE NUMBER OF COMPLETE EVALUATIONS PER RUN OF THE PROPOSED APPROACH WITHOUT AND WITH PARTIAL EVALUATIONS (EVOLVING WITH

ESTIMATED ERRORS)

version is more dependent on the number of variables. The
strong time reductions show why the cropping strategy is able
to apply these kinds of techniques within an evolutionary pro-
cess.

On the other hand, the running times of the studied GFSs are
shown in Table VIII. In this case, except for the very complex
datasets, the proposed method is able to obtain solutions tak-
ing only seconds or around 1 min. The times for the remaining
datasets are also very good, thus taking into account the kinds of
problems they represent and the evolutionary nature of this al-
gorithm. From these times, we can highlight the following facts.

1) It is no more than 30 min in the worst case of FSMOGFS and
no more than 2 h and 2 min in the worst case of FSMOGFS +
TUN. This last result is obtained in MV with 40 768 exam-
ples, thus showing a significant increase that is dependent
on the large number of examples due to the additional time
required by the second stage for fine tuning.

2) It is no more than 10 min in the worst case of FSMOGFSe

and no more than 21 min in the worst case of FSMOGFSe

+ TUNe . As fast error estimation is considered, the large
quantity of data of the MV problem does not affect
the overall two-stage approach, thus solving this prob-
lem in 12 min and 16 s, which, in this case, represents
89.83% with respect to not using the mechanism. In fact,
FSMOGFSe + TUNe needs less time than the initial learn-
ing algorithm without tuning, i.e., FSMOGFS, in the most-
complex datasets (i.e., MV, ELV, AIL, and TIC).

In order to show the real reason for the great time savings,
Table IX shows the average number of evaluations per run in
the different versions of the proposed approach. For the learning
stage, we will compute the number of evaluations by adding 1
per solution evaluated in all cases FSMOGFS and FSMOGFSe . This
way, in the case of using postprocessing as a second stage, this
will proceed from the number of evaluations that the learning
process (i.e., first stage) consumed. In the case of FSMOGFSe +
TUNe , in order to show how the fast error computation affects the
times, we consider in the table the total number of examples used

throughout the process (until reaching the stopping criterion)
divided by the total number of training examples to count part of
the second stage, i.e., TUNe . This is only to show the method’s
behavior since for the stopping criterion, we always consider
100 000 trials, i.e., evaluated individuals independent of the
kind of evaluation (i.e., partial or complete).

E. Analysis of the Pareto Fronts: Average Solutions

This section analyzes the performance of the proposed al-
gorithm in the remaining solutions that it obtains in the Pareto
fronts. For this, we plot the average Pareto fronts composed by
the average values of the obtained solutions in each of the 30
Pareto fronts. The first average solution that we want to plot is
the one shown in the previous sections, i.e., the average of the
most-accurate solutions obtained in each of the 30 Pareto fronts.
The second average solution is obtained in the same way, but
considering the second most-accurate solutions in each of the 30
Pareto fronts. This process is repeated until no more solutions
remain in any of the 30 Pareto fronts. We should remark that
there will be a moment at which any of the Pareto fronts will
have no more solutions to compute the average of 30 solutions,
i.e., the ith most-accurate solution is not available in all the
Pareto fronts. In this case, the ith average solution is calculated
considering the ith solutions of those Pareto fronts in which
these solutions are available.

We can then find two different parts in the average Pareto
fronts, i.e., the statistically trusted zone (i.e., the one ensuring
that there will be those solutions in all the Pareto fronts) and
the nonstatistically trusted zone (i.e., the one showing that some
other solutions are available in some of the 30 runs performed).
Thus, we can analyze the correlation and differences between the
different solutions obtained by the FSMOGFS algorithm in terms
of the Pareto fronts obtained with the average values, which
provide more reliable information than the solutions obtained in
a simple run. This method represents an extension of the idea of
analyzing the most-accurate solutions in the Pareto fronts (i.e.,
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Fig. 4. Average Pareto fronts obtained by FSMOGFSe and FSMOGFSe + TUNe and average solutions obtained by GR-MF, GA-WM, and GLD-WM on the different
datasets.

Fig. 5. Pareto fronts obtained by FSMOGFSe and FSMOGFSe + TUNe on the dataset Ailerons.

first, second, . . .) presented in [7], which is a postprocessing
mechanism where the search is focused on the most-accurate
solutions only. The average Pareto fronts represent what a user
should statistically expect when he is choosing the ith most-
accurate solution obtained from FSMOGFS.

The average Pareto fronts obtained in a representative set of
the studied datasets are shown in Fig. 4. This figure also includes
the average solutions obtained by the two single-objective-based
GFSs considered for comparisons. We can see that in most of the
datasets, many solutions in the trusted zone present better results
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in test than those obtained by the single-objective (accuracy-
oriented) based approaches.

A really important characteristic of the proposed method is the
very high correlation among the values in training and the values
in test. For each of the datasets considered, we can appreciate
that the average solutions in test are a mimic of the solutions
obtained in training. The main interest of this characteristic is
that it makes the selection of any solution of the obtained Pareto
fronts by a standard user very easy, i.e., by taking into account
the final number of rules/variables and the training error (test
errors are not available at the selection moment), any solution
could be selected depending on the necessities of the final user
expecting similar behavior in test, i.e., similar behavior when
the model is applied in real life to solve a problem. This is not
the typical situation since usually the solutions obtained in the
Pareto front do not present totally correlated errors in training
and test, which makes it very difficult to select a proper solution
with the desired generalizability.

This means that there are very simple solutions that could be
selected without losing a high degree of accuracy. In any case, as
mentioned before, a user could select any solution in the Pareto
front if the training error is acceptable to solve the problem.
Moreover, we can see that there is no overfitting in any of the
different parts of the obtained Pareto fronts.

The said behavior can also be checked for the remain-
ing datasets in a figure with the plots of the average Pareto
fronts together with the global result excel files on the web
page associated with the paper at http://sci2s.ugr.es/
FS-MOGFS/. In Fig. 5, we show two representative KBs (which
are the results of a single trial) on the dataset Ailerons. Addi-
tionally, we have depicted the KB of the most-accurate solution
from the first data partition and seed in all the datasets. These
graphics have been included in a zip file on the web page asso-
ciated with the paper, together with a brief analysis of some KB
examples as complementary material to the paper.

VI. CONCLUSION

In this study, we have proposed an effective MOEA for the
learning of linguistic KBs in high-dimensional regression prob-
lems, namely, FSMOGFS. This method, which is based on em-
bedded DB learning, allows a slight uniform displacement of the
linguistic fuzzy partitions and includes some effective mecha-
nisms in order to enable the derivation of simple and accu-
rate linguistic FRBSs in problems that are difficult to solve
with standard evolutionary methods. A postprocessing stage
performing a rule selection and a tuning of the MFs has been
applied as well for further refinement of the simple learned so-
lutions. This helps to significantly improve the performance
of the simple global structure (which is initially based on
strong fuzzy partitions), while the complexity is significantly
decreased.

In order to also take into account datasets with a large amount
of data, i.e., large-scale problems, we have also proposed a
mechanism to avoid using a big percentage of the examples for
error computation, estimating it from a reduced subset of the ex-
amples, but maintaining the performance and general behavior

of the methods. This mechanism has been defined, in general,
for evolving with estimated errors for use with any kind of
Elitist-based evolutionary algorithm, either single-objective or
multiobjective elitist-based ones. By doing so, we can also ap-
ply a postprocessing stage to further refine the learned solutions.
We have included this new error-estimation procedure in both
the learning and the postprocessing stages.

The results obtained in 17 datasets of different complexi-
ties confirm the effectiveness of the proposed method, particu-
larly in terms of the simplicity and generalizability of the ob-
tained models, but in terms of dimensionality and scalability as
well (particularly when using the fast error-estimation mecha-
nism). We have shown that the scalability of both FSMOGFSe

and FSMOGFSe + TUNe is a key characteristic of these ap-
proaches, which are able to solve problems with more than
40 000 cases or more than 80 variables in a very fast way.
Additionally, FSMOGFSe + TUNe is able to obtain promising
linguistic models, thus avoiding overfitting and keeping uni-
formly distributed strong fuzzy partitions in its first stage and
refined ones in its second stage, with very competitive results in
terms of accuracy.

The obtained KBs are the result of the application of the
well-known WM algorithm, which, based on covering criteria,
provides highly meaningful rules at each region of the modeled
surface. Further, because of this and because FSMOGFSe consid-
ers uniformly distributed fuzzy partitions, the models obtained
by this method are able to be further postprocessed (approximate
tuning, linear consequents learning, etc.), becoming a starting
point for these kinds of techniques.
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[14] R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni, “A
multi-objective evolutionary approach to concurrently learn rule and data
bases of linguistic fuzzy rule-based systems,” IEEE Trans. Fuzzy Syst.,
vol. 17, no. 5, pp. 1106–1122, Oct. 2009.

[15] M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Learning con-
currently partition granularities and rule bases of Mamdani fuzzy systems
in a multi-objective evolutionary framework,” Int. J. Approx. Reason.,
vol. 50, no. 7, pp. 1066–1080, 2009.

[16] M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Multi-
objective evolutionary learning of granularity, membership function pa-
rameters and rules of Mamdani fuzzy systems,” Evol. Intell., vol. 2,
no. 1/2, pp. 21–37, 2009.

[17] M. Cococcioni, P. Ducange, B. Lazzerini, and F. Marcelloni, “A pareto-
based multi-objective evolutionary approach to the identification of Mam-
dani fuzzy systems,” Soft Comput., vol. 11, pp. 1013–1031, 2007.

[18] A. A. Márquez, F. A. Márquez, and A. Peregrı́n, “Rule base and adaptive
fuzzy operators cooperative learning of Mamdani fuzzy systems with
multi-objective genetic algorithms,” Evol. Intell., vol. 2, no. 1-2, pp. 39–
51, 2009.

[19] O. Cordón, F. Herrera, and P. Villar, “Generating the knowledge base of a
fuzzy rule-based system by the genetic learning of the data base,” IEEE
Trans. Fuzzy Syst., vol. 9, no. 4, pp. 667–674, Aug. 2001.

[20] O. Cordón, F. Herrera, L. Magdalena, and P. Villar, “A genetic learning
process for the scaling factors, granularity and contexts of the fuzzy rule-
based system data base,” Inf. Sci., vol. 136, pp. 85–107, 2001.

[21] B. Filipic and D. Juricic, “A genetic algorithm to support learning fuzzy
control rules from examples,” in Genetic Algorithms and Soft Computing,
F. Herrera and J. L. Verdegay, Eds. Heidelberg, Germany: Physica-
Verlag, 1996, pp. 403–418.

[22] D. Simon, “Sum normal optimization of fuzzy membership functions,”
Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., vol. 10, no. 4,
pp. 363–384, 2002.

[23] W. Pedrycz, “Associations and rules in data mining: A link analysis,” Int.
J. Intell. Syst., vol. 19, no. 7, pp. 653–670, 2004.

[24] Y. Teng and W. Wang, “Constructing a user-friendly ga-based fuzzy sys-
tem directly from numerical data,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 5, pp. 2060–2070, Oct. 2004.
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